
Audit
Argo

Presented by:

OtterSec contact@osec.io

Robert Chen r@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:r@osec.io
mailto:Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-ARG-ADV-00 [crit] [resolved] | Missing MeterCapability Checks 6
OS-ARG-ADV-01 [crit] [resolved] | Broken Liquidation Access Control 8
OS-ARG-ADV-02 [high] [resolved] | Liquidation Remarking . 10
OS-ARG-ADV-03 [med] [resolved] | Liquidate Minimum Debt Vaults 12
OS-ARG-ADV-04 [med] [resolved] | Oracle Confidence Checks 13
OS-ARG-ADV-05 [low] [resolved] | Incorrect Repay Rounding . 14

05 General Findings 16
OS-ARG-SUG-00 [resolved] | Unify Health Checks . 17
OS-ARG-SUG-01 [resolved] | USDA Timed Rate Limit . 18

Appendices

A Vulnerability Rating Scale 19

© 2022 Otter Audits LLC. All Rights Reserved. 1 / 19

01 | Executive Summary

Overview

Argo engaged OtterSec to perform an assessment of the argo-move program. This assessment was
conducted between October 3rd and October 21st, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation. We delivered final confirmation of the patches October 23rd, 2022.

Key Findings

Over the course of this audit engagement, we produced 8 findings total.

Originally, Argo used a very modular design with many interacting submodules. While this design makes
it easier to compose, it also exposes a lot of moving parts and audit complexity, as we opined prior to the
start of the audit.

For example, we discovered two instances of broken access control (OS-ARG-ADV-00, OS-ARG-ADV-01)
which could directly lead to loss of funds. We also found additional concerns in the liquidation business
logic, oracle prices, andmore.

We also made general recommendations around safer design choices and rate limits (OS-ARG-SUG-00,
OS-ARG-SUG-01).

Overall, we commend the Argo team for being very responsive to feedback, even in light of our recom-
mendations for large architectural changes.

© 2022 Otter Audits LLC. All Rights Reserved. 2 / 19

02 | Scope
The source code was delivered to us in a git repository at github.com/argodao/argo-move. This audit was
performed against commit 0adc35c.

A brief description of the programs is as follows.

Name Description

argo-move Argo protocol smart contracts for minting of overcollateralized stablecoins

© 2022 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/argodao/argo-move

03 | Findings
Overall, we report 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 2
High 1

Medium 2
Low 1

Informational 2

© 2022 Otter Audits LLC. All Rights Reserved. 4 / 19

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-ARG-ADV-00 Critical Resolved Verify namespace addresses between cap and
manage_cap in lib_capability

OS-ARG-ADV-01 Critical Resolved Broken liquidation access control allows liquidators to skip
repayment

OS-ARG-ADV-02 High Resolved Lack of delay in liquidation marking prevents liquidations in
certain circumstances.

OS-ARG-ADV-03 Medium Resolved Vaults close to the minimum debt threshold cannot be liqui-
dated

OS-ARG-ADV-04 Medium Resolved Check oracle confidence before using prices

OS-ARG-ADV-05 Low Resolved required_repay_amount_internal should round
up the required repayment

© 2022 Otter Audits LLC. All Rights Reserved. 5 / 19

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-00 [crit] [resolved] | Missing MeterCapability Checks

Description

In meter_capability, the add_meter_cap_usage and sub_meter_cap_usage functions are
security critical checks on the minting/burning of tokens.

lib_capability/sources/meter_capability.move RUST

public fun add_meter_cap_usage<Feature>(
cap: &MeterCap<Feature>,
add_amount: u64,
manage_cap: &ManageMeterCap<Feature>,

) acquires GlobalMeter {
let global_meter =

borrow_global_mut<GlobalMeter<Feature>>(manage_cap.namespace_addr);↪→

let meter = vector::borrow_mut(&mut global_meter.caps, cap.id);
let new_global_usage = global_meter.usage + add_amount;
let new_usage = meter.usage + add_amount;

These functions take in aMeterCapwhich corresponds to the ability tomint some strictly limited amount
tokens in a given namespace. This namespace is defined and managed by the ManageMeterCap, as
seen in laboratory::mint.

argo_core/sources/laboratory.move RUST

/// Mints `mint_amount` USDA.
public fun mint(

mint_amount: u64,
cap: &MeterCap<USDASupplyFeature>,

): Coin<USDA> acquires Laboratory {
let laboratory = borrow_global<Laboratory>(@argo_core);
meter_capability::add_meter_cap_usage(

cap,
mint_amount,
&laboratory.usda_supply_manage_cap,

);

Unfortunately, the MeterCap type is not unique.

Anybody is able to create a GlobalMeter<USDASupplyFeature> and claim the corresponding Me-
terCap. Note that MeterCap’s id would overlap with an existing id on the namespace, allowing amalicious
user to essentially forge a MeterCap.

© 2022 Otter Audits LLC. All Rights Reserved. 6 / 19

Argo Audit 04 | Vulnerabilities

lib_capability/sources/meter_capability.move RUST

/// Receive a MeterCap<Feature> that has a limit default of 0.
public fun claim_cap<Feature>(

namespace_addr: address
): MeterCap<Feature> acquires GlobalMeter {

From here it’s trivial to mint arbitrary amounts of USDA.

Remediation

Verify that cap and manage_cap have the same namespace address.

Patch

Resolved in 8711245.

lib_capability/sources/meter_capability.move RUST

assert!(
cap.namespace_addr == manage_cap.namespace_addr,
error::invalid_argument(ENAMESPACE_MISMATCH),

);

After discussionwith the Argo team, they also redesigned their architecture to removelib_capability
and lib_rate_limit.

© 2022 Otter Audits LLC. All Rights Reserved. 7 / 19

https://github.com/argodao/argo-move/commit/87112459b261b17784d57a3f2e82174767859a58

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-01 [crit] [resolved] | Broken Liquidation Access Control

Description

Argo implements liquidations via a flashloan systemusing thehot potatomethod, returning a LiquidateIOU
object with no abilities.

argo_engine/sources/engine_v1.move RUST

public fun liquidate_withdraw<NamespaceType, CoinType>(
owner_addr: address,
liquidate_amount: u64,
cap: &Cap<LiquidateFeature<NamespaceType, CoinType>>,

): (Coin<CoinType>, LiquidateIOU<NamespaceType, CoinType>) acquires
Engine, Vault {↪→

The intended behavior is to interact directly with argo_liquidate as a wrapper over the underlying
Argo Engine functions.

argo_liquidate/sources/liquidate_v1.move RUST

public fun liquidate_withdraw<NamespaceType, CoinType>(
params_addr: address,
owner_addr: address,
liquidate_amount: u64,

): (Coin<CoinType>, LiquidateIOU<NamespaceType, CoinType>) acquires
LiquidateParams {↪→

let params = borrow_global<LiquidateParams<NamespaceType,
CoinType>>(params_addr);↪→

return engine_v1::liquidate_withdraw<NamespaceType, CoinType>(
owner_addr,
liquidate_amount,
¶ms.liquidate_cap,

)
}

Critical security checks are also performed in the argo_liquidate handler, such as asserting that the
correct amount is repaid by the liquidator.

argo_liquidate/sources/liquidate_v1.move RUST

assert!(
max_repay_amount >= required_repay_amount,

© 2022 Otter Audits LLC. All Rights Reserved. 8 / 19

Argo Audit 04 | Vulnerabilities

error::invalid_argument(EREPAY_NOT_ENOUGH),
);

Access control between argo_liquidate and argo_engine is enforced through the use of a Liqui-
dateFeature capability.

Unfortunately, this capability access control requirement is not enforced on liquidate_repay.

argo_engine/sources/engine_v1.move RUST

public fun liquidate_repay<NamespaceType, CoinType>(
to_repay: Coin<USDA>,
liquidation_tax: Coin<USDA>,
iou: LiquidateIOU<NamespaceType, CoinType>,

) acquires Engine, Vault {

This means a liquidator can simply payback 1 token.

Proof of Concept

1. Callargo_liquidate::liquidate_withdraw andwithdraw all of an underwater position’s
collateral

2. Call argo_engine::liquidate_repay and repay 1 USDA.

Patch

Similar to OS-ARG-ADV-00, Argo removed argo_liquidate and flattened their architecture.

© 2022 Otter Audits LLC. All Rights Reserved. 9 / 19

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-02 [high] [resolved] | Liquidation Remarking

Description

Argo uses a descending auction system to process liquidations. When a vault is undercollateralized and
eligible for liquidation, it becomes ”marked” and the descending auction begins.

argo_engine/sources/engine_v1.move RUST

/// Mark a Vault for liquidation. A Vault can only be marked if it is
below the↪→

/// maintenance_collateral_ratio and the Safe is fresh.
public fun mark_vault<NamespaceType, CoinType>(

marker: &signer,
owner_addr: address,

) acquires Engine, Vault {

Unfortunately, this function does not ensure that the vault was not previously marked. As a result, a
user attempting to prevent the liquidation of their vault can repeatedly mark their own vault to reset the
descending auction.

argo_engine/sources/engine_v1.move RUST

/// Gas-efficient calculation of auction_price
fun auction_price_internal<NamespaceType, CoinType>(

engine: &Engine<NamespaceType, CoinType>,
liquidator_addr: address,
owner_addr: address,

): u64 acquires Vault {

Note that there are some preconditions for exploitation.

The descending auction price starts at oracle_free_price_internal which represents the ex-
pected collateral price derived from the maintenance ratio and debt value. There is also a liquidation
delay which could make this issue more impactful.

A liquidator could potentially atomically mark and liquidate the vault if the initial price for the auction is
higher than theactual collateral value, dependingonhowliquidate_delayandmarker_advantage
are set.

Remediation

Ensure that the vault is not already marked in mark_vault.

© 2022 Otter Audits LLC. All Rights Reserved. 10 / 19

Argo Audit 04 | Vulnerabilities

Patch

Resolved in 2c31c5c.

argo_engine/sources/engine_v1.move RUST

assert!(vault.mark_info.marker_addr == @0,
error::invalid_state(EALREADY_MARKED));↪→

© 2022 Otter Audits LLC. All Rights Reserved. 11 / 19

https://github.com/argodao/argo-move/commit/2c31c5cd40d230b8bd0aa8b4b2c54217a7dd4404

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-03 [med] [resolved] | Liquidate Minimum Debt Vaults

Description

Argo enforces a minimum debt threshold when repaying vaults.

Unfortunately, liquidate_repay also enforces that the collateral ratio of the vault isn’t repaid fully.

argo_engine/sources/engine_v1.move RUST

let collateral_ratio = collateral_ratio_internal(engine, vault);
assert!(

collateral_ratio < engine.liquidation_collateral_ratio,
error::invalid_argument(ELIQUIDATE_TOO_MUCH),

);

This means that vaults that are close to the minimum debt threshold cannot be liquidated.

Remediation

Rework the minimum collateral ratio check

Patch

Resolved in 2c31c5c.

argo_engine/sources/engine_v1.move RUST

let collateral_ratio = collateral_ratio(
coin::value(&vault.collateral),
max(scaled_debt_internal(engine, vault), engine.minimum_debt),
safe::price(engine.safe_addr),
coin::decimals<CoinType>(),

);
assert!(

collateral_ratio < engine.liquidation_collateral_ratio,
error::invalid_argument(ELIQUIDATE_TOO_MUCH),

);

© 2022 Otter Audits LLC. All Rights Reserved. 12 / 19

https://github.com/argodao/argo-move/commit/2c31c5cd40d230b8bd0aa8b4b2c54217a7dd4404

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-04 [med] [resolved] | Oracle Confidence Checks

Description

High oracle confidence values indicate that providers disagree on the actual price. Pyth, for example,
represents confidence as the difference between the 25/75th quartile and the median price.

In this case, it’s safer to ignore the value than to use a potentially inaccurate value.

Remediation

Check the confidence of oracles.

Patch

Resolved in 2c31c5c.

argo_engine/sources/engine_v1.move RUST

let confidence_bps = scale_ceil(conf, BPS_PRECISION, magnitude);
if (confidence_bps > oracle.max_conf_bps) {

return
};

© 2022 Otter Audits LLC. All Rights Reserved. 13 / 19

https://github.com/argodao/argo-move/commit/2c31c5cd40d230b8bd0aa8b4b2c54217a7dd4404

Argo Audit 04 | Vulnerabilities

OS-ARG-ADV-05 [low] [resolved] | Incorrect Repay Rounding

Description

The required USDA repaid is calculated in required_repay_amount_internal. This function
should round up instead of down to properly round against the user. Otherwise, for small repayment
amounts, it might be possible to further decrease the health of the vault.

argo_liquidate/sources/liquidate_v1.move RUST

/// Gas-efficient calculation of required_repay_amount
fun required_repay_amount_internal<NamespaceType, CoinType>(

params: &LiquidateParams<NamespaceType, CoinType>,
liquidator_addr: address,
owner_addr: address,
liquidate_amount: u64,

): u64 {
return math::scale_floor(

liquidate_amount,
auction_price_internal(params, liquidator_addr, owner_addr),
PRICE_PRECISION

)
}

Remediation

Use scale_ceil.

Patch

Resolved in 2c31c5c.

argo_engine/sources/engine_v1.move RUST

/// Gas-efficient calculation of required_repay_amount
fun required_repay_amount_internal<NamespaceType, CoinType>(

engine: &Engine<NamespaceType, CoinType>,
liquidator_addr: address,
owner_addr: address,
liquidate_amount: u64,

): u64 acquires Vault {
return scale_ceil(

liquidate_amount,

© 2022 Otter Audits LLC. All Rights Reserved. 14 / 19

https://github.com/argodao/argo-move/commit/2c31c5cd40d230b8bd0aa8b4b2c54217a7dd4404

Argo Audit 04 | Vulnerabilities

auction_price_internal(engine, liquidator_addr, owner_addr),
PRICE_PRECISION

)
}

© 2022 Otter Audits LLC. All Rights Reserved. 15 / 19

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-ARG-SUG-00 Unify health checks for collateral ratio andminimum debt

OS-ARG-SUG-01 USDA rate limits can be bypassed by up to a factor of two on reset boundaries

© 2022 Otter Audits LLC. All Rights Reserved. 16 / 19

Argo Audit 05 | General Findings

OS-ARG-SUG-00 [resolved] | Unify Health Checks

Description

Argo currently uses a number of disjoint checks for each function that interacts with collateral ratio.

argo_engine/sources/engine_v1.move RUST

assert!(
withdraw_passes_initial_collateral_ratio_internal(engine, vault,

amount),↪→

error::invalid_argument(ECOLLATERAL_RATIO_TOO_LOW),
);

argo_engine/sources/engine_v1.move RUST

assert!(
mint_passes_minimum_debt_internal(engine, vault, amount),
error::invalid_argument(EBELOW_MINIMUM_DEBT),

);

It would be cleaner to unify these checks by checking against the collateral ratio after the relevant opera-
tions.

Patch

Resolved in 2c31c5c.

argo_engine/sources/engine_v1.move RUST

// Check resulting debt is greater than the minimum debt and resulting
collateral ratio is↪→

// above the initial collateral ratio
assert!(

scaled_debt_internal(engine, vault) >= engine.minimum_debt,
error::invalid_argument(EBELOW_MINIMUM_DEBT),

);

© 2022 Otter Audits LLC. All Rights Reserved. 17 / 19

https://github.com/argodao/argo-move/commit/2c31c5cd40d230b8bd0aa8b4b2c54217a7dd4404

Argo Audit 05 | General Findings

OS-ARG-SUG-01 [resolved] | USDA Timed Rate Limit

Description

USDA usda_timed_limit resets discretely after a period of usda_timed_duration seconds.

argo_engine/sources/engine_v1.move RUST

fun update_timed_period(laboratory: &mut Laboratory) {
let now = timestamp::now_seconds();
let time_elapsed = now - laboratory.usda_timed_last_reset;
if (time_elapsed > laboratory.usda_timed_duration) {

laboratory.usda_timed_last_reset = now;
laboratory.usda_timed_usage = 0;

};
}

Remediation

This isn’t particularly impactful, and can likely be mitigated by adjusting the limits such that double the
rate limit is still acceptable.

Patch

Argo acknowledges the rate limit behavior and will choose parameters accordingly.

© 2022 Otter Audits LLC. All Rights Reserved. 18 / 19

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2022 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-ARG-ADV-00 [crit] [resolved] | Missing MeterCapability Checks
	OS-ARG-ADV-01 [crit] [resolved] | Broken Liquidation Access Control
	OS-ARG-ADV-02 [high] [resolved] | Liquidation Remarking
	OS-ARG-ADV-03 [med] [resolved] | Liquidate Minimum Debt Vaults
	OS-ARG-ADV-04 [med] [resolved] | Oracle Confidence Checks
	OS-ARG-ADV-05 [low] [resolved] | Incorrect Repay Rounding

	General Findings
	OS-ARG-SUG-00 [resolved] | Unify Health Checks
	OS-ARG-SUG-01 [resolved] | USDA Timed Rate Limit

	Appendices
	Vulnerability Rating Scale

