
Audit
Entertainmint

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-ENT-ADV-00 [high] [resolved] | Stealing Tokens From Protocol 6
OS-ENT-ADV-01 [med] [resolved] | Locking Of Protocol Fee In Contract 7

05 General Findings 8
OS-ENT-SUG-00 | Gas Optimizations . 9
OS-ENT-SUG-01 | Reconfigurable Protocol Fee Percentage . 11
OS-ENT-SUG-02 | Checking Existence Before Returning . 12
OS-ENT-SUG-03 | Enforcing Constraints On TierParams . 13

Appendices

A Vulnerability Rating Scale 14

© 2022 Otter Audits LLC. All Rights Reserved. 1 / 14

01 | Executive Summary

Overview

Entertainmint engaged OtterSec to perform an assessment of the emint program. This assessment was
conducted between December 12th and December 20th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered final confirmation of the patches January 4th, 2023.

Key Findings

Over the course of this audit engagement, we produced 6 findings total.

In particular, we found a critical issue that could lead to the stealing of protocol funds by the project owner
(OS-ENT-ADV-00), as well as an issue with locking of protocol fee funds in the contract(OS-ENT-ADV-01).

We also made recommendations around gas optimizations on some functions (OS-ENT-SUG-00) and
having re-configurable protocol fee percentages (OS-ENT-SUG-03).

Overall, we commend the Entertainmint team for being responsive and knowledgeable throughout the
audit.

© 2022 Otter Audits LLC. All Rights Reserved. 2 / 14

02 | Scope
The source code was delivered to us in a git repository at github.com/entertainmintlive/emint. This audit
was performed against commit 26a6fae.

A brief description of the programs is as follows.

Name Description

emint A fundraising protocol for streamers and content creators.

© 2022 Otter Audits LLC. All Rights Reserved. 3 / 14

https://github.com/entertainmintlive/emint

03 | Findings
Overall, we report 6 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 0
High 1

Medium 1
Low 0

Informational 4

© 2022 Otter Audits LLC. All Rights Reserved. 4 / 14

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-ENT-ADV-00 High Resolved Project owner can steal protocol funds by manipulating
raise’s parameters.

OS-ENT-ADV-01 Medium Resolved Protocol fee collected from a raise is locked in the contract.

© 2022 Otter Audits LLC. All Rights Reserved. 5 / 14

Entertainmint Audit 04 | Vulnerabilities

OS-ENT-ADV-00 [high] [resolved] | Stealing Tokens From Protocol

Description

The protocol has a list of allowed addresses called creators. A creator can create projects and start raises
for those projects. The Raise struct is used to store the values related to a raise. A raise also has tiers for
storing different types of tokens, which have different supply caps and prices. These Raise and Tier
values can be updated by the project owner when the raise is in Scheduled state.

The raise will be in scheduled state in two cases, before presale and in between presale end and public
sale start. However, since the raise tokens are minted in presale, the project owner should not be able to
modify the prices and the currency of the raise. This is not enforced properly, leading to a scenario where
a project owner can steal tokens and ETH from the contract that is raised by other projects.

Proof of Concept

1. The controller adds a creator’s address to the creators list.

2. Then, the creator creates a project and creates a raise onto that project with a pre-approved token
as currency, along with their own address to the allowlist of address (for example, USDT) that can
mint tokens in presale and a very low amount as the goal for the raise.

3. Then in the presale, the creator canmint the tokens andmake the raise reach its goal.

4. When the raise is in its scheduled phase again (between presale end and public sale start), the
creator can update the currency of the raise to a higher value currency (for example, ETH) and close
the raise where the raise’s state goes to Funded.

5. Now, theproject owner canuse thewithdraw function towithdraw theraise.balanceamount
from the contract address, but instead of getting USDT, they will get ETH transferred to their account.

Remediation

This can be fixed by not allowing the project owner to change the raise and tier parameters after the
start of minting raise tokens. This can be done by changing the condition in the update function,
which checks if the raise’s state is Scheduled to check if the block.timestamp is less than the
raise.presaleStart.

Patch

Fixed by checking the block timestamp in 35c8d1f

© 2022 Otter Audits LLC. All Rights Reserved. 6 / 14

https://github.com/entertainmintlive/emint/commit/35c8d1f

Entertainmint Audit 04 | Vulnerabilities

OS-ENT-ADV-01 [med] [resolved] | Locking Of Protocol Fee In Contract

Description

In Raises.sol, the close function is called by the project owner to close a raise and change it’s
state to RaiseState.Funded if it has reached its goal amount. If a raise’s state is changed from
RaiseState.Active to RaiseState.Funded, the protocol fee amount from that raise should be
stored in the global fee balance. Otherwise, the protocol fee collected from the raise will be stuck in the
contract balance and cannot be retrieved.

src/Raises.sol SOLIDITY

183 /// @inheritdoc IRaises
184 function close(uint32 projectId, uint32 raiseId) external override

onlyCreators whenNotPaused {↪→

185 // Checks
186 Raise storage raise = _getRaise(projectId, raiseId);
187 if (raise.state != RaiseState.Active) revert RaiseInactive();
188 if (raise.raised < raise.goal) revert RaiseGoalNotMet();
189

190 // Effects
191 emit CloseRaise(projectId, raiseId, raise.state = RaiseState.Funded);
192 }

Proof of Concept

1. A project owner creates a raise and closes the raise after it has reached its goal.

2. Now, if the protocol tries to collect the protocol fee for that raise, no amount is transferred, since
the raise.fees is not added to fees[raise.currency].

Remediation

A simple fix for this is to add the raise.fees value to fees[raise.currency] before changing the
state to RaiseState.Funded.

Patch

Fixed by adding raise fees to global fees in 689b6f2

© 2022 Otter Audits LLC. All Rights Reserved. 7 / 14

https://github.com/entertainmintlive/emint/commit/689b6f2

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-ENT-SUG-00 Code refactoring that optimizes gas usage of the functions.

OS-ENT-SUG-01 Protocol Fee should be reconfigurable instead of hardcoded.

OS-ENT-SUG-02 Checking if project and raise exists before returning tier.

OS-ENT-SUG-03 Enforcing additional constraints on TierParams.

© 2022 Otter Audits LLC. All Rights Reserved. 8 / 14

Entertainmint Audit 05 | General Findings

OS-ENT-SUG-00 | Gas Optimizations

Description

In RaiseCodec.sol and TokenCodec.sol, the decode functions decode the data from bits by first
left shifting the respective mask to respective offset and apply bitwise AND operator on the bits and then
again right shifting the result with respective offset to get the value of the field.

Remediation

This canbe optimizedby just repeatedly right shifting the bits and apply respectivemask to get the field val-
ues. The below code snippet shows example implementation of decode function in RaiseCoded.sol:

src/libraries/codecs/RaiseCodec.sol SOLIDITY

1 import {RaiseData, TierType} from "../../structs/RaiseData.sol";
2 import {ONE_BYTE, ONE_BYTE_MASK, FOUR_BYTES, FOUR_BYTE_MASK} from

"../../constants/Codecs.sol";↪→

3

4 uint240 constant PROJECT_ID_SIZE = uint240(FOUR_BYTES);
5 uint240 constant RAISE_ID_SIZE = uint240(FOUR_BYTES);
6 uint240 constant TIER_ID_SIZE = uint240(FOUR_BYTES);
7

8 function decode(bytes30 tokenData) external pure returns (RaiseData
memory) {↪→

9 uint240 bits = uint240(tokenData);
10

11 uint32 projectId = uint32(bits & FOUR_BYTE_MASK);
12 uint32 raiseId = uint32((bits >>= PROJECT_ID_SIZE) & FOUR_BYTE_MASK);
13 uint32 tierId = uint32((bits >>= RAISE_ID_SIZE) & FOUR_BYTE_MASK);
14 TierType tierType = uint8((bits >>= TIER_ID_SIZE) & ONE_BYTE_MASK);
15

16 return RaiseData({tierType: tierType, tierId: tierId, raiseId:
raiseId, projectId: projectId});↪→

17 }

Description

In RaiseToken.sol, the projectId unnecessarily decodes the entire tokenId just to get the
projectId.

© 2022 Otter Audits LLC. All Rights Reserved. 9 / 14

Entertainmint Audit 05 | General Findings

Remediation

This can be optimized by getting the required projectId field only from the tokenId by using bitwise
operators. The code snippet below shows the implementation that can be done:

src/libraries/RaiseToken.sol SOLIDITY

import {TokenCodec, DATA_OFFSET} from "./codecs/TokenCodec.sol";
import {RaiseCodec, PROJECT_ID_MASK} from "./codecs/RaiseCodec.sol";
function projectId(uint256 tokenId) internal pure returns (uint32

projectId) {↪→

uint32 projectId = uint32((tokenId >> DATA_OFFSET) &
PROJECT_ID_MASK);↪→

}

Description

In Raises.sol, in redeem and _mint functions, the tierId is ensured to be in bounds by throwing
error if the given tierId is greater than length of the tiers array minus 1.

Remediation

This condition can be optimized by changing it to check if the given tierId is greater than or equal to
length of the tiers array.

src/Raises.sol DIFF

242 // Get the tier if it exists
243 - if (tierId > tiers[projectId][raiseId].length - 1) revert NotFound();
244 + if (tierId >= tiers[projectId][raiseId].length) revert NotFound();
245 Tier storage tier = tiers[projectId][raiseId][tierId];

© 2022 Otter Audits LLC. All Rights Reserved. 10 / 14

Entertainmint Audit 05 | General Findings

OS-ENT-SUG-01 | Reconfigurable Protocol Fee Percentage

Description

In Fees.sol, the calculate function is used to calculate the fee that should be taken by the protocol
based on tierType and mintPrice. These percentage values are hardcoded into the code.

src/libraries/Fees.sol SOLIDITY

8 /// @title Fees - Fee calculator
9 /// @notice Calculates protocol fee based on token mint price.
10 library Fees {
11 function calculate(TierType tierType, uint256 mintPrice)
12 internal
13 pure
14 returns (uint256 protocolFee, uint256 creatorTake)
15 {
16 uint256 feeBps = (tierType == TierType.Fan) ? 500 : 2500;
17 protocolFee = (feeBps * mintPrice) / BPS_DENOMINATOR;
18 creatorTake = mintPrice - protocolFee;
19 }
20 }

Remediation

It is recommended to take these values from function parameters, which can only be controlled by the
controller.

© 2022 Otter Audits LLC. All Rights Reserved. 11 / 14

Entertainmint Audit 05 | General Findings

OS-ENT-SUG-02 | Checking Existence Before Returning

Description

In Raises.sol, the getTiers function is used to get the tiers list from a given projectId and
raiseId. This function doesn’t throw error if the project or raise does not exist.

Remediation

It is recommended to check theexistenceof projectwith givenprojectIdand raisewith givenraiseId.
Below is a code snippet showing the changes that could be made to the function:

src/Raises.sol DIFF

334 /// @inheritdoc IRaises
335 function getTiers(uint32 projectId, uint32 raiseId) external view

override returns (Tier[] memory tier) {↪→

336 + // Check that project exists
337 + if (totalRaises[projectId] == 0) revert NotFound();
338 +
339 + // Get the raise if it exists
340 + raise = raises[projectId][raiseId];
341 + if (raise.projectId == 0) revert NotFound();
342 +
343 return tiers[projectId][raiseId];
344 }

© 2022 Otter Audits LLC. All Rights Reserved. 12 / 14

Entertainmint Audit 05 | General Findings

OS-ENT-SUG-03 | Enforcing Constraints On TierParams

Description

In TierValidator.sol, the validate function is used to check if the provided tier parameters
satisfies some constraints. This function currently checks if the tier.supply value is greater than 0.

Remediation

The validate function should also enforce constraints on tier.limitPerAddress to check if it is
greater than 0.

src/libraries/validators/TierValidator.sol DIFF

8 /// @title TierValidator - Tier parameter validator
9 library TierValidator {
10 function validate(TierParams memory tier) internal pure {
11 if (tier.supply == 0) {
12 revert ValidationError("zero supply");
13 }
14 + if (tier.limitPerAddress == 0) {
15 + revert ValidationError("zero limitPerAddr");
16 + }
17 }
18 }

© 2022 Otter Audits LLC. All Rights Reserved. 13 / 14

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2022 Otter Audits LLC. All Rights Reserved. 14 / 14

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-ENT-ADV-00 [high] [resolved] | Stealing Tokens From Protocol
	OS-ENT-ADV-01 [med] [resolved] | Locking Of Protocol Fee In Contract

	General Findings
	OS-ENT-SUG-00 | Gas Optimizations
	OS-ENT-SUG-01 | Reconfigurable Protocol Fee Percentage
	OS-ENT-SUG-02 | Checking Existence Before Returning
	OS-ENT-SUG-03 | Enforcing Constraints On TierParams

	Appendices
	Vulnerability Rating Scale

