
Audit
Eternal Finance

Presented by:

OtterSec contact@osec.io

Robert Chen r@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:r@osec.io
mailto:sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-ETN-ADV-00 [crit] | Improper Implementation Of Positions 6
OS-ETN-ADV-01 [crit] | Critical Access Control Check . 7
OS-ETN-ADV-02 [crit] | Missing Slippage Checks . 8
OS-ETN-ADV-03 [low] | Improper Path Validation And Usage 10

05 General Findings 12
OS-ETN-SUG-00 | Overuse Of Mutable Borrows . 13
OS-ETN-SUG-01 | Unused BankInfo Field . 14
OS-ETN-SUG-02 | Inaccurate Bitmap Constant . 15
OS-ETN-SUG-03 | Unable To Withdraw Cake FromWMC . 16
OS-ETN-SUG-04 | Unable To Close Position . 17

Appendices

A Vulnerability Rating Scale 18

B Procedure 19

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 19

01 | Executive Summary

Overview
Eternal Finance engaged OtterSec to perform an assessment of the eternal-contracts program.
This assessment was conducted between January 9th and January 20th, 2023. For more information on
our auditing methodology, see Appendix B.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered final confirmation of the patches [not yet delivered].

Key Findings
Over the course of this audit engagement, we produced 9 findings total.

In particular, we identified numerous loss of funds issues including an inconsistency in position imple-
mentation (OS-ETN-ADV-00), a lack of asset manipulation checks (OS-ETN-ADV-02), and improper proper
access control on internal functions (OS-ETN-ADV-01).

We also made recommendations around unnecessary mutable borrows (OS-ETN-SUG-00), unused bank
information fields (OS-ETN-SUG-01), and an incorrect bitmap constant (OS-ETN-SUG-02).

Overall, we appreciate the Eternal Finance team’s responsiveness throughout our engagement.

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 19

02 | Scope
The source code was delivered to us in a git repository at github.com/eternalfinanceio/eternal-contracts.
This audit was performed against commit 5bc32ce.

A brief description of the programs is as follows.

Name Description

eternal-contracts eternal-contracts implements leveraged yield farming using PancakeSwap
protocol.

• bankmaintains vaults and user positions.

• vaultmaintains user deposited collateral and withdrawn debts. Interest is
accrued over time and added to debt value.

• pancake_dex_worker contains entry functions for the user to create and
reduce positions. It also enables some whitelisted users to reinvest rewards
and liquidate positions.

• pancake_wmasterchef contains functions used by worker module to
deposit lp coins into pancake masterchef and earn cake rewards. It also
contains functions to harvest rewards and stake it to gain extra rewards.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/eternalfinanceio/eternal-contracts

03 | Findings
Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 3
High 0

Medium 0
Low 1

Informational 5

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 19

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-ETN-ADV-00 Critical Resolved Improper implementation of positions leads to inconsistency
in coll_token.share.

OS-ETN-ADV-01 Critical Resolved Improper access control checks lead to loss of funds.

OS-ETN-ADV-02 Critical Resolved Improper slippage checks in swaps allow for the theft of rein-
vested assets.

OS-ETN-ADV-03 Low Resolved Improper setting and usage of paths lead to the failure of
cake rewards reinvestment.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 19

Eternal Finance Audit 04 | Vulnerabilities

OS-ETN-ADV-00 [crit] | Improper Implementation Of Positions

Description

In the bank.movemodule, the Position struct is utilized to store collateral share amounts and debts
on a position. However, there exists an inconsistency in the implementation of positions between the
bank.move and pancake_dex_worker.movemodules. The bankmodule assumes that a position
canmanage the collateral and debts ofmultiple coins, whereas theworkermodule assumes that a position
can only hold the collateral and debts for one coin pair.

bank.move RUST

struct Position<CollToken> has store {
coll_token: Option<CollToken>, // Stores only one type of collateral
debt_bitmap: u128, // Handles multiple collaterals
debt_share_of: SimpleMap<String, u64>, // Handles multiple

collaterals↪→

user: address,
pos_id: u64,

}

This is inconsistent because if a position is expected to manage the collateral of multiple coin pairs, the
position struct in the bank should have amap of CollToken structs with coin name as key instead of
storing just one CollToken field. Alternatively, if it is expected to handle only one coin pair, then the
create_position, reduce_position and liquidate functions should have checks to validate
whether the coins that have passed in the generics are actually associated with the position.

This inconsistency could result in the loss of funds. For example, adding to an existing position with
a different coin pair would increase the position share, regardless of the initial coin pair. Additionally,
the health checks assume that the debts vector returned from the bank::get_position_debts
function has a length of two, which can result in improper health checks and under-collateralized loans.

Remediation

If a position is expected to handlemultiple coin pairs, it is recommended to add amap of CollTokens to
the Position struct and update the CollTokens accordingly. If the intended behaviour of a position
is to handle only one coin pair, it is recommended to validate that the coin pairs passed in the generics
align with the coin type of the LP shares stored in the position.coll_token.

Patch

Fixed by adding type validation in 6afe287.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 19

https://github.com/eternalfinanceio/eternal-contracts/commit/6afe28776d7ffe0fc0f6957080596ac3d95c9b44

Eternal Finance Audit 04 | Vulnerabilities

OS-ETN-ADV-01 [crit] | Critical Access Control Check

Description

In common_config.move, the resource_signer function is utilized to obtain the signer from the
signer capability that is stored in the resource based on the provided seed. This function is employed by
other modules to generate, save, and retrieve resource accounts. Since the created resource account is
used to store tokens in other modules, it is crucial that only the protocol modules can access this function.

common_config.move RUST

public fun resource_signer(seed: vector<u8>): signer acquires
ResourceOwnershipCapStore{↪→

assert!(resource_acc_exists_at(seed), ERROR_SEED);
let resources =

&borrow_global<ResourceOwnershipCapStore>(@LYF).resources;↪→

account::create_signer_with_capability(&table::borrow(resources,
seed).signer_cap)↪→

}

To prevent unauthorized access to the resource_signer function while protecting the funds in the
wmasterchefmodule, it is recommended to restrict the access of this function to only the protocol
modules.

Remediation

This issue can be fixed by changing the access level of the function to friend and providing access to
the function only to the trusted protocol modules.

Patch

Fixed in e69fea5.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 19

https://github.com/eternalfinanceio/eternal-contracts/commit/e69fea56b9a99231b7533ae67c95a207bb239969

Eternal Finance Audit 04 | Vulnerabilities

OS-ETN-ADV-02 [crit] | Missing Slippage Checks

Description

get_lp_by_cake does not properly perform slippage checks against an oracle price when swapping as-
setsaround. Thismainlyoccurs inswap_exact_x_to_y_direct_externalandadd_liquidity
_from_1_token.

pancake_dex_worker.move RUST

if(path == 0) {
let coin_x_swap = router::swap_exact_x_to_y_direct_external<Cake,
X>(cake);↪→

coin::merge(&mut coin_x, coin_x_swap);
coin::merge(&mut coin_x, coin::withdraw<X>(resource_signer,
get_my_balance<X>()));↪→

} else if (path == 1){
// ...

// 5. add liquidity from only coin x or coin y
add_liquidity_from_1_token<X, Y>(coin_x, coin_y)

get_lp_by_cake is used when reinvesting to the exchange earned cake for LP tokens.

pancake_dex_worker.move RUST

fun reinvest_sorted<X, Y>(cake: Coin<Cake>) {
// 1.0.1 send cake to treasury?

// 1.1 trade cake via reinvest path
// ...
}else{

wmc::stake<LPToken<X, Y>>(dex_helper::get_lp_by_cake<X,
Y>(cake));↪→

};

It is possible for an attacker to use flash loans to manipulate the underlying pool, causing the swap to
execute at a poor price. The attacker would then be able to swap back through the pool, frontrunning the
reinvestment swap. Because reinvesting is done in a permissionless manner, this could allow for the theft
of any accrued cake.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 19

Eternal Finance Audit 04 | Vulnerabilities

Remediation

One potential solution would be to make reinvesting permissioned, similar to the design for liquidations.
We note that unpermissioned liquidations are also similarly vulnerable to the manipulation of protocol
health.

Another possible solution would be to enforce slippage requirements on swap, comparing the output
with the expected output provided by an oracle. This model would bemore decentralized and could be
more sustainable in the long run.

Patch

Fixed in aebdeb3.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 19

https://github.com/eternalfinanceio/eternal-contracts/commit/aebdeb33d7318294cc0fa2ebaf5c0683e011f302

Eternal Finance Audit 04 | Vulnerabilities

OS-ETN-ADV-03 [low] | Improper Path Validation And Usage

Description

In pancake_dex_helper.move, the set_paths function sets a path to be used when reinvesting
Cake rewards, verifying whether the path exists or not. When idx = 2, the function checks whether the
path Cake -> AptosCoin -> X exists or not. However, in the get_lp_by_cake function, when
path = 2, it uses the Cake -> AptosCoin -> Y path to convert the Cake rewards to Y token,
which is inconsistent with the validations in the set_paths function.

lyf/pancake_dex_helper.move RUST

} else if (idx == 2) {
assert!(swap::is_pair_created<Cake, MIDToken1>() ||
swap::is_pair_created<MIDToken1, Cake>(), ERROR_WRONG_PATH);↪→

assert!(swap::is_pair_created<X, MIDToken1>() ||
swap::is_pair_created<MIDToken1, X>(), ERROR_WRONG_PATH);↪→

}else {

lyf/pancake_dex_helper.move RUST

} else if (path == 2){
let coin_mid = router::swap_exact_x_to_y_direct_external<Cake,
MIDToken1>(cake);↪→

let coin_y_swap =
router::swap_exact_x_to_y_direct_external<MIDToken1,
Y>(coin_mid);

↪→

↪→

coin::merge(&mut coin_y, coin_y_swap);
coin::merge(&mut coin_y, coin::withdraw<Y>(resource_signer,
get_my_balance<Y>()));↪→

} else {

This inconsistency could potentially cause the get_lp_by_cake function to fail. When path = 2, the
function attempts to convert Cake rewards from Cake -> AptosCoin -> Y, but this path may not
exist.

Remediation

Toaddress the inconsistencybetween thevalidations in theset_paths functionand theget_lp_by_cake
function, we recommend adding a idx = 3 case to the set_paths function, where it checks if the
path Cake -> AptosCoin -> Y exists or not. Then, in the get_lp_by_cake function, we suggest
using thepath = 2 case to convert cake rewards in theCake -> AptosCoin -> X path, and using
the path = 3 case to convert cake rewards in the Cake -> AptosCoin -> Y path.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 19

Eternal Finance Audit 04 | Vulnerabilities

Patch

Fixed in 797a45c.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 19

https://github.com/eternalfinanceio-eternal-contracts/commit/797a45c1af9278adbb52259e3635a39750b4930e

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-ETN-SUG-00 Mutable borrows are used when immutable borrows could suffice.

OS-ETN-SUG-01 BankInfo::is_listed is unused in the current implementation but provides
important functionality.

OS-ETN-SUG-02 An incorrect bitmap constant is used in bank::repay.

OS-ETN-SUG-03 Cake rewards that are collected in WMC can only be reinvested and cannot be with-
drawn.

OS-ETN-SUG-04 Function check used by health check makes it impossible to close a position.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 19

Eternal Finance Audit 05 | General Findings

OS-ETN-SUG-00 | Overuse Of Mutable Borrows

Description

Throughout the codebase, many examples of resources are mutably borrowed when the values are not
mutated. This makes it more difficult to reason about changes in data.

For example, in the debt_share_to_val function, no changes to the state are done. However, the
vaults are borrowedmutably.

pancake_dex_worker.move RUST

/// @dev Return the Token debt value given the debt share. Be careful of
unaccrued interests.↪→

public fun debt_share_to_val(coin_name: String, debt_share: u64) :u64
acquires Vaults {↪→

let vaults = borrow_global_mut<Vaults>(@LYF);
let vault_info = simple_map::borrow_mut<String, VaultInfo>(&mut

vaults.vaults, &coin_name);↪→

if (vault_info.vault_debt_share == 0) return debt_share; // When
there's no share, 1 share = 1 val.↪→

safe_math::mul_div_round_up_u64(debt_share, vault_info.vault_debt_val,
vault_info.vault_debt_share)↪→

}

Remediation

Refactor the code to use borrow_global instead of borrow_global_mut.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 19

Eternal Finance Audit 05 | General Findings

OS-ETN-SUG-01 | Unused BankInfo Field

Description

The is_listed field on BankInfo determines whether or not borrowing is allowed from the bank.

bank.move RUST

struct BankInfo has store {
is_listed: bool, // whether borrowing is allowed.
index: u8, // Reverse look up index for this bank.
total_share: u64 // The total debt share count across all open
positions.↪→

}

However, the current bankmodule provides no way to change it from the default value of the true set in
init_bank.

bank.move RUST

/// @dev Add a new bank to the ecosystem.
public entry fun init_bank<CoinType>(acc: &signer) acquires MetaData {

// ...

// 1. add bank info
let bank = BankInfo {

is_listed: true,
index: (index as u8),
// total_debt: 0,
total_share: 0

};

Remediation

Create admin-gated functions to modify BankInfo::is_listed.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 19

Eternal Finance Audit 05 | General Findings

OS-ETN-SUG-02 | Inaccurate Bitmap Constant

Description

In bank::repay, 255 is used as the bitmap constant. However, this only works if the bank index is less
than 8.

bank.move RUST

*debt_share_of =
if(*debt_share_of > share_reduced) *debt_share_of - share_reduced
else {

*&mut pos.debt_bitmap = *&mut pos.debt_bitmap & (255 - (1 <<
*&bank.index)); // remove from bit map↪→

0
};

Remediation

Use u128::MAX instead of 255.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 19

Eternal Finance Audit 05 | General Findings

OS-ETN-SUG-03 | Unable To Withdraw Cake FromWMC

Description

In the wmasterchef.movemodule, cake rewards are collected from the pancake protocol into the
resource account for every deposit and withdraw. The cake rewards are harvested and reinvested again in
the protocol using the harvest_reward and stake functions by the whitelisted users, but there is no
way for the protocol to withdraw the cake rewards accumulated into the resource account.

Remediation

It is recommended to add a permissioned function that transfers the cake rewards collected into the
resource account to the treasury account.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 19

Eternal Finance Audit 05 | General Findings

OS-ETN-SUG-04 | Unable To Close Position

Description

In the pancake_dex_helper.movemodule, the function calculate_debt_bps is used to cal-
culate the debt ratio of a position. This is used for checking a position’s health while depositing and
withdrawing shares and during liquidation. However, the current implementation of this function returns
themaximumpossible value (10000) when the lp_amount parameter is zero. This creates an issue when
attempting to close a position andmakes the share balance zero, as the debt ratio would be at maximum
regardless of the actual debts, causing the health check to fail.

pancake_dex_helper.move RUST

public fun calculate_debt_bps<X, Y>(
lp_amount: u64,
tokens: &vector<String>,
debts: &vector<u64>,

): u64 {
// if no more collateral, debt is 10000.
if (lp_amount == 0) {

return 10000
};

Remediation

It is recommended to check if the debts are empty before returning 10000 when the lp_amount is zero.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 19

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 19

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-ETN-ADV-00 [crit] | Improper Implementation Of Positions
	OS-ETN-ADV-01 [crit] | Critical Access Control Check
	OS-ETN-ADV-02 [crit] | Missing Slippage Checks
	OS-ETN-ADV-03 [low] | Improper Path Validation And Usage

	General Findings
	OS-ETN-SUG-00 | Overuse Of Mutable Borrows
	OS-ETN-SUG-01 | Unused BankInfo Field
	OS-ETN-SUG-02 | Inaccurate Bitmap Constant
	OS-ETN-SUG-03 | Unable To Withdraw Cake From WMC
	OS-ETN-SUG-04 | Unable To Close Position

	Appendices
	Vulnerability Rating Scale
	Procedure

