
Audit
Mayan

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Harrison Green hgarrereyn@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:hgarrereyn@osec.io
mailto:Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-MYN-ADV-00 [crit] [resolved] | Stealing Tokens While Swapping 6
OS-MYN-ADV-01 [med] [resolved] | DOSWhile Performing Swap - 1 7
OS-MYN-ADV-02 [med] [resolved] | DOSWhile Performing Swap - 2 8
OS-MYN-ADV-03 [med] [resolved] | DOSWhile Performing Swap - 3 9
OS-MYN-ADV-04 [low] [resolved] | Unnecessary Extra Fee Consumption 10
OS-MYN-ADV-05 [low] [resolved] | Dust Amount Stuck In Contract 11

05 General Findings 12
OS-MYN-SUG-00 [resolved] | Unnecessary Signed Cross Program Invocation 13
OS-MYN-SUG-01 [resolved] | More Appropriate Function Names 14
OS-MYN-SUG-02 [resolved] | Code Refactoring . 15

Appendices

A Vulnerability Rating Scale 16

B Procedure 17

© 2022 Otter Audits LLC. All Rights Reserved. 1 / 17

01 | Executive Summary

Overview

Mayan Finance engaged OtterSec to perform an assessment of the solana-programs and swap-
bridge programs. This assessment was conducted between December 2nd, 2022 and January 6th, 2023.
For more information on our auditing methodology, see Appendix B.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered final confirmation of the patches January 9th, 2023.

Key Findings

Over the course of this audit engagement, we produced 9 findings total.

In particular, we found a critical issue which could lead to loss of user funds (OS-MYN-ADV-00), as well as
some denial of service concerns while performing swaps leading to the locking of user funds (OS-MYN-
ADV-01, OS-MYN-ADV-02, OS-MYN-ADV-03).

We also made suggestions around tighter access control around critical signer seeds (OS-MYN-SUG-00)
and general refactors (OS-MYN-SUG-01).

Overall, we commend the Mayan Finance team for being responsive and knowledgeable throughout the
audit.

© 2022 Otter Audits LLC. All Rights Reserved. 2 / 17

02 | Scope
The source code was delivered to us in a git repositories at github.com/mayan-finance/solana-programs
and github.com/mayan-finance/swap-bridge. This audit was performed against commits e323616 and
a46288f respectively.

A brief description of the programs is as follows.

Name Description

solana-programs Solana implementation for Mayan cross-chain swap auction protocol.
swap-bridge Contracts for publishing and verifying cross-chain swapmessages using Wormhole

message passing and token bridge.

© 2022 Otter Audits LLC. All Rights Reserved. 3 / 17

https://github.com/mayan-finance/solana-programs
https://github.com/mayan-finance/swap-bridge

03 | Findings
Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 1
High 0

Medium 3
Low 2

Informational 3

© 2022 Otter Audits LLC. All Rights Reserved. 4 / 17

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-MYN-ADV-00 Critical Resolved Relayer can steal tokenswhile performing flash swap leading
to loss of user funds.

OS-MYN-ADV-01 Medium Resolved A malicious user can cause DoS for other users while per-
forming their swaps by using different token accounts.

OS-MYN-ADV-02 Medium Resolved Amalicioususer cancauseDoS forotheruserswhileperform-
ing their swaps by using claim instruction with unintended
inputs.

OS-MYN-ADV-03 Medium Resolved A malicious user can cause DoS for other users while per-
forming their swaps by initializing state before claim using
init from solana instruction.

OS-MYN-ADV-04 Low Resolved Extra fee is collected from payer and sent to token bridge fee
account unnecessarily.

OS-MYN-ADV-05 Low Resolved Dust amount while performing swaps is left in the contract.

© 2022 Otter Audits LLC. All Rights Reserved. 5 / 17

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-00 [crit] [resolved] | Stealing Tokens While Swapping

Description

In mayan_flash_swap_finish instruction, the spl_transfer function transfers the tokens from
from_acc to theto_acc to complete the swap. Here, thespl_transfer functionuses themayan_invoke
function internally, which makes all of the Cross-Program Invocations(CPI) with sol_invoke_signed,
since the ctx->invoke_with_seed is set to true on the initialization of the context of an instruction.

Now, a malicious user can perform the swap, and while calling the mayan_flash_swap_finish
instruction, they can pass in the token account of the main PDA account, for which bridged tokens are
transferred (like ATA) and finish the swap. This performs the transfer between token accounts of main
account, essentially giving free tokens to the malicious user.

Proof of Concept

1. User1 calls the swap function on the ethereum contract with ATA of the main PDA account as
recepient.mayanAddr to swap X tokens for Y, which transfers the funds to that address.

2. Another user User2 (malicious) calls the swap function on the ethereum contract to swap Y tokens
to X.

3. Now, a malicious user can call the mayan_flash_swap_start instruction to collect the from
tokens and call mayan_flash_swap_finish instruction with ATA of main PDA account on X
mint as from_acc and to_acc, which transfers the tokens from and to the same account.

4. The swap is considered as completed, but the tokens that should be transferred to the to_acc at
the end of the swap are not transferred to it.

Remediation

This can be remediated by separating the mayan_invoke into two functions, mayan_invoke and
mayan_invoke_signed and using signed invocation only when necessary.

Patch

Fixed by separating the CPI mayan_invoke function into two separate functions with andwithout seeds
in efae9ee.

© 2022 Otter Audits LLC. All Rights Reserved. 6 / 17

https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-01 [med] [resolved] | DOSWhile Performing Swap - 1

Description

Inmayan_flash_swap_start instruction, thevalidate_flash_swap_start functionvalidates
the accounts passed to that instruction. It does not validate whether the from_acc passed in was in fact
the account that received tokens for performing the current swap.

A malicious user can bridge funds to a different token account under the main account’s ownership and
use another token account of the main that is used by another genuine user to complete the flash swap.
This results in denial of service for the genuine user when trying to do the swap.

Proof of Concept

1. User1 calls the swap function on the ethereum contract with ATA of the main PDA account as
recepient.mayanAddr, which transfers the funds to that address

2. Another user, User2 (malicious), calls the swap function on the ethereum contract with some token
account of the main PDA account (not ATA) as recepient.mayanAddr

3. Now, before the User1 can perform the swap, User2 claims using mayan_claim instruction and
performs swap with ATA of the main PDA account as from_acc.

4. The swap is completed by the User2. Now, if User1 tries to perform the swap with ATA of the main
PDA account, the swap fails, as the tokens are already used by User2 to perform their swap.

Remediation

This can be remediate by storing the to_acc onmayan state and validating it while doing the swap or by
asserting then token account used to be Associated Token Account(ATA) of the main PDA account while
bridging the funds and doing the swap.

Patch

Fixed by asserting msg1.target_addr to be ATA of main PDA account in efae9ee.

© 2022 Otter Audits LLC. All Rights Reserved. 7 / 17

https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-02 [med] [resolved] | DOSWhile Performing Swap - 2

Description

Inclaim instruction, thevalidate_mint_accounts functionvalidates themint_fromandmint_to
accounts passed in with the PDAs generated with given token address, chain id and nonce.

A malicious user can call the claim instruction with non-canonical mint_to_nonce and its relevant
PDA. Then the instruction stores that mint_to as the destination token address. This makes the state
unable to swap, since the mint_to is not a valid tokenmint address. Although the user will be able to
retrieve his funds after the specified deadline is over, a malicious user can perform this multiple times on
all the incoming swaps andmake the protocol unusable for the genuine users.

Proof of Concept

1. A user calls the swap function on the ethereum contract to start the swap.

2. A malicious user then calls the claim instruction with non-canonical mint_to_nonce and its
relevant PDA.

3. Now, if a user/relayer tries to perform swap on the state using the mayan_flash_swap_start
instruction, the user has to transfer mint_to tokens in the mayan_flash_swap_finish in-
struction, which is not possible since a tokenmint account doesn’t exist at that address.

4. Now the state is rendered useless and the funds can be retrieved by the user only after the specified
deadline is over.

Remediation

This can be remediated by calculating the PDA of the mint_from and mint_to addresses on-chain
with canonical bumps instead of taking them from the user input.

Patch

Resolved in 4539a1d.

© 2022 Otter Audits LLC. All Rights Reserved. 8 / 17

https://github.com/mayan-finance/solana-programs/commit/4539a1d3ee62d989303551dd911b408f8627d0da

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-03 [med] [resolved] | DOSWhile Performing Swap - 3

Description

Ininit_from_solana instruction, a state PDA account is createdwith givenmsg1 andmsg2 accounts.
Then, mint_from tokens are collected from the user to main ATA and a state is created with the given
swap details.

A malicious user can pass in msg1 and msg2 accounts of a genuine swap to the init_from_solana
instruction and create initialize a state on that before claim instruction is called on them. This makes
the program throw when trying to create swap state for the genuine swap using the claim instruction.

Proof of Concept

1. A user calls the swap function on the ethereum contract to start the swap.

2. A malicious user then calls the init_from_solana instruction with genuine msg1 and msg2
addresses and initializes a state on that account.

3. Now, if the genuine user/relayer tries to initialize state on those msg accounts using the claim
instruction, the program throws error since the state is already initialized at the address.

Remediation

Since the msg1 and msg2 accounts are expected to be random addresses, this can be remediated by
asserting the msg accounts to be signers.

Patch

Resolved in 4539a1d.

© 2022 Otter Audits LLC. All Rights Reserved. 9 / 17

https://github.com/mayan-finance/solana-programs/commit/4539a1d3ee62d989303551dd911b408f8627d0da

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-04 [low] [resolved] | Unnecessary Extra Fee Consumption

Description

In mayan_trx instruction, the fee for bridging tokens is taken as input from data where that amount is
transferred from the payer account to fee account of the token bridge

This is redundant as the token bridge already has implementation that takes the fee amount required to
bridge the tokens directly from the payer (here)

flash-swap/src/mayanswap.c C

185 result = system_transfer(ctx, trx.owner->key,
trx.transfer.fee_acc->key, trx.transfer.fee);↪→

186 if (result != SUCCESS)
187 {
188 mayan_error("cannot transfer fee");
189 return result;
190 }

Remediation

The unnecessary system_transfer function that transfers fee from payer account to fee account
should be removed.

Patch

Unnecessary system_transfer function call is removed in efae9ee.

© 2022 Otter Audits LLC. All Rights Reserved. 10 / 17

https://github.com/wormhole-foundation/wormhole/blob/dev.v2/solana/modules/token_bridge/program/src/api/transfer.rs#L242
https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701

Mayan Audit 04 | Vulnerabilities

OS-MYN-ADV-05 [low] [resolved] | Dust Amount Stuck In Contract

Description

The swap function in the ethereum contract is called by the user to swap tokens through wormhole. The
amountInnumber of tokens are transferred from theuser account to the contract account, then are trans-
ferred through the token bridge. However, the token bridge performs normalize and denormalize
on the amount to be transferred in order to remove the dust amount. So, if the user transfers tokens with
dust amount, they will get stuck in the contract and cannot be retrieved.

Similarly, the wrapAndSwapETH function also uses the token bridge which returns the dust amount of
ETH back to the contract, which cannot be retrieved and becomes stuck.

Proof of Concept

1. Call the swap function to swap tokens that have more than 8 decimals and an amountIn value
with no trailing zeroes.

2. You will see that only the denormalize(normalize(amountIn)) value is transferred by the
token bridge and the remaining amount is left in the contract balance.

Remediation

This can be remediated by either taking only the required amount of tokens from the user (without dust
amounts) or by having a functionality for the guardian to collect the dust amounts left in the contract.

Patch

Resolved in #1.

© 2022 Otter Audits LLC. All Rights Reserved. 11 / 17

https://github.com/mayan-finance/evm-contracts/pull/1

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-MYN-SUG-00 Unnecessary invocation of all cross-program invocations with signer seeds of all
PDAs.

OS-MYN-SUG-01 Consider using more appropriate and declarative names for functions

OS-MYN-SUG-02 Code refactoring by removing unnecessary function parameters, struct fields, etc.

© 2022 Otter Audits LLC. All Rights Reserved. 12 / 17

Mayan Audit 05 | General Findings

OS-MYN-SUG-00 [resolved] | Unnecessary Signed Cross Program Invocation

Description

The mayan_invoke function checks for a context variable ctx->invoke_with_seed and based on
that, itmakesCross-ProgramInvocation(CPI)withorwithout seeds. Since thectx->invoke_with_seed
is set to true in ctx_init function, which is called from entrypoint, every instruction has this value set
to true and all CPIs are invoked with signer seeds of all PDAs.

This can cause unintended behaviors where a CPI is expected to be signed by the instruction caller, but
instead, all the PDA accounts are passed in as signers to the CPI.

flash-swap/src/ctx.c C

46 u64 ctx_init(struct prog_ctx *ctx, SolParameters *params)
47 {
48 ctx->params = params;
49 ctx->prog_id = params->program_id;
50

51 ctx->invoke_with_seed = true;

flash-swap/src/ctx.h C

149 inline static u64 mayan_invoke(const struct prog_ctx *ctx,
150 const SolInstruction *ix)
151 {
152 if (ctx->invoke_with_seed) {
153 return sol_invoke_signed(ix, ctx->params->ka,
154 ctx->params->ka_num, ctx->seeds,
155 SOL_ARRAY_SIZE(ctx->seeds));
156 }
157 return sol_invoke(ix, ctx->params->ka, ctx->params->ka_num);
158 }

Remediation

This can be remediated by defining two separate functions for CPI,mayan_invoke that does CPI without
seeds and mayan_invoke_signed that does the CPI with signer seeds of PDAs.

Patch

Resolved in efae9ee.

© 2022 Otter Audits LLC. All Rights Reserved. 13 / 17

https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701

Mayan Audit 05 | General Findings

OS-MYN-SUG-01 [resolved] | More Appropriate Function Names

Description

The functionctx_check_state_addr checks if thegiven stateaccount is equal to theProgramDerived
Address(PDA) generated with state seeds stored on the ctx.

Remediation

Amore appropriate name forctx_check_state_addr functionwould bectx_check_seed_addr.

Description

The functionmayan_data_rate returns the rate for the swap before the swap and returns the sequence
ID of the Wormhole VAAmessage after the swap.

Remediation

If the rate and sequence ID are not required, then it is recommended to remove the field from the state. Oth-
erwise, amoreappropriatename for themayan_data_rate functionwouldbemayan_data_seq_id,
since the rate is an unused field.

Patch

Resolved in efae9ee.

© 2022 Otter Audits LLC. All Rights Reserved. 14 / 17

https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701

Mayan Audit 05 | General Findings

OS-MYN-SUG-02 [resolved] | Code Refactoring

Description

The write_* functions in utils.h are used to write given data to a given data_ptr and increment
the data_ptr by the size of the data written to it. But, the data parameter passed into them are not
used anywhere in the function.

Remediation

It is recommended to remove the unnecessary data parameter in the write_* functions.

Description

The swap_delegate_seed field and its related functions are not used anywhere in the program.
The decimal field in state PDA account is also not used anywhere in the program. There are some
SolPubkeys hardcoded in the program like SWAP_PROGRAM_ID, SWIM_6_PROGRAM_ID, etc.

Remediation

It is recommended to remove the unnecessary parts of the codementioned above.

Description

In transfer_inchain_spl function, the state.state is set to STATE_DONE_SWAPPED but this
is an improper state and is also unnecessary, since the state is overwritten with proper value again in
the transfer_inchain function. And in the wh_check_claimed function, it returns false when
chain_id doesn’t match with any given chains. Since the return value of the function is u64, the false
value is considered as 0, which is equal to SUCCESS. Therefore, in the error case, the function returns
SUCCESS.

Remediation

It is recommended to remove the unnecessary assignment of state in transfer_inchain_spl func-
tion. Also, the ERROR_CUSTOM_ZERO should be returned instead of returning false when chain_id
doesn’t match any of the given chains.

Patch

Resolved in efae9ee and e323616.

© 2022 Otter Audits LLC. All Rights Reserved. 15 / 17

https://github.com/mayan-finance/solana-programs/commit/efae9ee260189d04e0167b2ee5c248d6b24e0701
https://github.com/mayan-finance/solana-programs/commit/e323616

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2022 Otter Audits LLC. All Rights Reserved. 16 / 17

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 Otter Audits LLC. All Rights Reserved. 17 / 17

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-MYN-ADV-00 [crit] [resolved] | Stealing Tokens While Swapping
	OS-MYN-ADV-01 [med] [resolved] | DOS While Performing Swap - 1
	OS-MYN-ADV-02 [med] [resolved] | DOS While Performing Swap - 2
	OS-MYN-ADV-03 [med] [resolved] | DOS While Performing Swap - 3
	OS-MYN-ADV-04 [low] [resolved] | Unnecessary Extra Fee Consumption
	OS-MYN-ADV-05 [low] [resolved] | Dust Amount Stuck In Contract

	General Findings
	OS-MYN-SUG-00 [resolved] | Unnecessary Signed Cross Program Invocation
	OS-MYN-SUG-01 [resolved] | More Appropriate Function Names
	OS-MYN-SUG-02 [resolved] | Code Refactoring

	Appendices
	Vulnerability Rating Scale
	Procedure

