Aries Markets
Presented by:
OtterSec contact@osec.io
Robert Chen notdeghost@osec.io
Akash Gurugunti sudoussrak@osec.io
Shiva Shankar Genji shlv@osec.io A

C
.
® @

4

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:Sud0u53r.ak@osec.io
mailto:sh1v@osec.io

Contents

01 Executive Summary

Overview v v i i e e
KeyFindings

02 Scope
03 Findings

04 Vulnerabilities

OS-ARS-ADV-00 [crit] [resolved] | Improper Oracle Calculations
OS-ARS-ADV-01 [high] [resolved] | Improper Calculation in Liquidation
OS-ARS-ADV-02 [med] [resolved] | DOS While Removing Shares From Reserve

05 General Findings

0S-ARS-SUG-00 | Enforcing Unlimited Deposit and Borrow Limits
OS-ARS-SUG-01 | Validating Struct Fields Before Updation
OS-ARS-SUG-02 | Improper Constraint on Optimal Utilization

OS-ARS-SUG-03 | Usage of Proper Error Codes
OS-ARS-SUG-04 | Fee Withdraw Function For Admin . .

06 Formal Verification

OS-ARS-VER-00 | Data Invariant Specifications

OS-ARS-VER-01 | Miscellaneous Function Specifications

Appendices
A Vulnerability Rating Scale

© 2022 OtterSec LLC. All Rights Reserved.

10
11
12
13
14
15

16
17
18

19

1/19

01 ‘ Executive Summary

Overview

Aries Markets engaged OtterSec to perform an assessment of the aries program. This assessment was
conducted between October 3rd and October 21st, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team over to streamline patches
and confirm remediation. We delivered final confirmation of the patches November 11th, 2022.

Key Findings

Over the course of this audit engagement, we produced 10 findings total.

In particular, we reported a number of issues around oracle pricing (0S-ARS-ADV-00), liquidation calcula-
tions (OS-ARS-ADV-01), and denial of service vectors (0S-ARS-ADV-02).

We also made suggestions around improved admin validation, code style, and utilization optimization
(0S-ARS-SUG-00, 0S-ARS-SUG-02, 0S-ARS-SUG-04).

Finally, we presented a discussion of formal verification and explored ideas for possible data invariants as
well as miscellaneous function specifications (OS-ARS-VER-00, OS-ARS-VER-01).

Overall the code quality was extremely high. The Aries team was responsive to feedback and a pleasure to
work with.

© 2022 OtterSec LLC. All Rights Reserved. 2/19

02 ‘ Scope

The source code was delivered to us in a git repository at github.com/Aries-Markets/aries-markets. This
audit was performed against commit add3db2.

A brief description of the programs is as follows.

Name Description

Aries Markets Lending & borrowing protocol built on Aptos

© 2022 OtterSec LLC. All Rights Reserved. 3/19

https://github.com/Aries-Markets/aries-markets

03 ‘ Findings

Overall, we report 10 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical
High

1

1

Medium 1
Low 0
4

Informational

© 2022 OtterSec LLC. All Rights Reserved. 4/19

04 ‘ Vulnerabilities

Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-ARS-ADV-00 Critical ~ Resolved Miscalculation in Pyth oracle feed leads to incorrect oracle
values

0S-ARS-ADV-01 High Resolved The settle share amount is improperly calculated while per-
forming liquidation.

OS-ARS-ADV-02 Resolved Denial of Service while removing shares from the reserve.

© 2022 OtterSec LLC. All Rights Reserved. 5/19

Aries Markets Audit 04 | Vulnerabilities

OS-ARS-ADV-00 [crit] [resolved] | Improper Oracle Calculations

Description

Pyth price calculationsin oracle.move are performed incorrectly.

oracle/sources/oracle.move

pyth_price = option::some(decimal: :div(

— decimal::from_u64(pyth:: ::get_magnitude_if_positive(&pyth::price:
decimal::from_ul28(mathl128: :pow(10,
— (pyth:: ::get_magnitude_if_positive(&pyth::price::get_expo(&price)
-)))

))

The price should be multiplied by, not divided by, the magnitude. This code also errors if the magnitude is
negative.

Remediation

Multiply by the magnitude.

Patch

Resolved in 2a62fc8.

© 2022 OtterSec LLC. All Rights Reserved. 6/19

https://github.com/Aries-Markets/aries-markets/commit/2a62fc8e03f5b9e8dabd040959f02c98a7025aed

773
774

775

776

777
778

Aries Markets Audit 04 | Vulnerabilities

OS-ARS-ADV-01 [high] [resolved] | Improper Calculation in Liquidation

Description

Inprofile.move, the amount of shares that need to be settled is calculated incorrectly. In the else
case of the liquidation function, the settle_share_amount should be calculated from the
repay_amount using the get_share_amount_from_borrow_amount function. Instead, the re-
pay amount is directly returned as the settle share amount.

Since the value of shares increases with the accumulation of borrow interest, the actual
settle_share_amount would be less than the repay_amount. Directly subtracting the repay
amount from borrowed shares will decrease the overall value of a borrowed share and affect the health of
the protocol.

Proof of Concept
Consider the following scenario:

1. Auser borrows X amount from the protocol. This is recorded as X number of borrowed shares.

2. After some time, borrow interest accumulates and the total borrowed amount on the reserve in-
creases, thus increasing the borrow share value.

3. Now, if the user’s account loses health and the liquidator liquidates X amount of the loan amount,
only X amount of shares are subtracted from the user’s borrowed shares in spite of the increase
borrowed share value.

Remediation

A possible remediation is converting repay_amount to shares using the
get_share_amount_from_borrow_amount function in the else case of the
liquidate_profile function.

aries/sources/profile.move

if (decimal::gte(bonus_liquidation_value, collateral_value)) {
let repay_percentage = decimal::div(collateral_value,
bonus_liquidation_value);

let settle_amount = decimal::mul(max_liquidation_amount,
repay_percentage) ;

let repay_amount = decimal::ceil_u64(settle_amount);

let withdraw_amount = withdraw_reserve.collateral_amount;

© 2022 OtterSec LLC. All Rights Reserved. 7/19

Aries Markets Audit 04 | Vulnerabilities

779 (repay_amount, withdraw_amount,
< reserve::get_share_amount_from_borrow_amount_dec(settle_amount))
780 } else {

781 let withdraw_percentage = decimal: :div(bonus_liquidation_value,
collateral_value);

782 let settle_amount = max_liquidation_amount;

783 let repay_amount = decimal::ceil_u64(settle_amount);

784 let withdraw_amount = decimal::floor_u64(

785 decimal: :mul_u64 (withdraw_percentage,
withdraw_reserve.collateral_amount)

786)

787

788 (repay_amount, withdraw_amount,

reserve: :get_share_amount_from_borrow_amount_dec(settle_amount))

789

Patch

Resolved in ba3c164

© 2022 OtterSec LLC. All Rights Reserved. 8/19

https://github.com/Aries-Markets/aries-markets/commit/ba3c164ebaa99139c49b66ab73f119dd23fb9f94

Aries Markets Audit 04 | Vulnerabilities

OS-ARS-ADV-02 [med] [resolved] | DOS While Removing Shares From Reserve

Description

In profile.move, the try_subtract_profile_reward_share function checks whether the
profile has a farm for that specific reserve type while subtracting shares from a profile farm. If a farm
doesn’t exist, the reward for that reserve is created after the profile is created, so the function skips the
subtraction of shares.

This case is not handled while subtracting shares from the reserve farmin the
reserve::try_remove_reserve_reward_sharefunction. Thisleadstothe subtraction of shares
that were previously absent in the reserve.

Proof of Concept
Consider the following scenario:

1. Areserveis created.

2. Auser (userl) mints and deposits collateral to the reserve. Since the farm doesn’t have any rewards,
no shares are added to reserve_farmorprofile_farm.

3. Areward is added to the reserve_farmfor that reserve.

4. Another user (user2) mints and deposits collateral to the reserve. Since thereisa reserve_farm,
shares are added to the reserve_farmand profile_farm.

5. If userl removes their collateral while they have no shares in their profile_farm, no shares are
subtracted from their profile farm. Shares are still removed from their reserve_farm.

6. Now if user2 tries to withdraw their collateral, the reserve farm gives an error since userl has
subtracted shares from the reserve farm.

Remediation
A possible method of remediation is ensuring the amount of shares subtracted from the reserve farm is

equal to the amount of shares subtracted from the profile farm.

Patch

Resolved in 7f0519d.

© 2022 OtterSec LLC. All Rights Reserved. 9/19

https://github.com/Aries-Markets/aries-markets/commit/7f0519dec524db7bfc81d05c6da2180405e5da7d

05 ‘ General Findings

Here we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

0S-ARS-SUG-00 Unlimited deposit and borrow limits are not implemented.
OS-ARS-SUG-01 Struct fields should be validated before updating them.
0S-ARS-SUG-02 Optimal utilization should be properly constrained.
OS-ARS-SUG-03 Assert constraints should generate the proper error codes.

OS-ARS-SUG-04 There is no function implemented that allows the admin to withdraw the protocol’s
fees.

© 2022 OtterSec LLC. All Rights Reserved. 10/19

Aries Markets Audit 05 | General Findings

OS-ARS-SUG-00 | Enforcing Unlimited Deposit and Borrow Limits

Description

In reserve_config.move, the struct ReserveConf1g stores deposit and borrow limits that need
to be enforced on the relevant reserve. It is mentioned in the comments that if the deposit and borrow
limits values of the struct are 0, then no limits will be enforced on the deposit and borrow functions in
that reserve. But the behavior described is not implemented in the functions that return those values.

Below is the code snippet that contains the said comments:

aries-config/sources/reserve_config.move

deposit_Tlimit:

borrow_1limit:

Remediation

A possible method for remediation is returning u64_MAX if those values are 0. The below code snippet
shows the changes that could be made:

aries-config/sources/reserve_config.move

187 public fun deposit_limit(reserve_config: &ReserveConfig): u64 {
188 if (reserve_config.deposit_limit == 0) {

189 18446744073709551615

190 } else {

191 reserve_config.deposit_limit

192
193

aries-config/sources/reserve_config.move

198 public fun borrow_limit(reserve_config: &ReserveConfig): u64 {
199 if (reserve_config.borrow_1limit == 0) {

200 18446744073709551615

201 } else {

202 reserve_config.borrow_limit
203
204

© 2022 OtterSec LLC. All Rights Reserved. 11/19

103

104
105
106
107
108

Aries Markets Audit 05 | General Findings

OS-ARS-SUG-01 | validating Struct Fields Before Updation

Description

In reserve_config.move and interest_rate_config.move, struct fields are accessed and
modified using getter and setter functions generated by a TypeScript script. Conditions enforced while
instancing these structs should also be enforced while updating fields of the structs using the setter
functions outside of instantiation.

Remediation

A possible method for remediation is asserting the necessary conditions on the fields in their respective
setter functions. The below code snippet shows a possible implementation:

aries-config/sources/reserve_config.move

public fun update_loan_to_value(reserve_config: &ReserveConfig,
— loan_to_value: u8): ReserveConfig {
assert! (0 <= loan_to_value && loan_to_value <= 100, 0);

let new_reserve_config = *reserve_config;
new_reserve_config.loan_to_value = loan_to_value;
new_reserve_config

© 2022 OtterSec LLC. All Rights Reserved. 12/19

Aries Markets Audit 05 | General Findings

OS-ARS-SUG-02 | Improper Constraint on Optimal Utilization

Description

Ininterest_rate_config.move,theoptimal_utilizationfieldinthe
InterestRateConfiigstructis constrained to be less than or equal to 100. But this leads to
get_borrow_rate throwing an error in the case where utilization is greater than
optimal_utilization,sincel - optimal_utilization, whichisequalto 0, is used inthe
denominator.

Remediation

A possible method for remediation is constraining the value of optimal_utilization to be strictly
”less than 100” instead of ”less than or equal to 100”. The below code snippet shows a possible implemen-
tation:

aries-config/sources/interest_rate_config.move

public fun new_interest_rate_config(

min_borrow_rate: u64,

optimal_borrow_rate: u64,

max_borrow_rate: u64,

optimal_utilization: u64
): InterestRateConfig {

assert! (0 <= optimal_utilization && optimal_utilization < 100, 0);
assert! (min_borrow_rate <= optimal_borrow_rate && optimal_borrow_rate
< <= max_borrow_rate, 0);

InterestRateConfig {
min_borrow_rate,
optimal_borrow_rate,
max_borrow_rate,
optimal_utilization

© 2022 OtterSec LLC. All Rights Reserved. 13/19

Aries Markets Audit 05 | General Findings

OS-ARS-SUG-03 | Usage of Proper Error Codes

Description

While most of the assert constrains generate the proper error codes, there are still some constraints that
do not. For example, in profile: :new function, if the profile doesn’t exist, the error code used in
the assertis EPROFILE_ALREADY_EXIST instead of EPROFILE_NOT_EXIST. Similarly some of the
constraints simply generate error code 0, instead of relevant error codes.

The below code snippets shows some examples of the usage of improper error codes (highlighted):

aries/sources/profile.move

iPE] public fun new(account: &signer, profile_name: string::String) acquires

— Profiles {
129 addr = signer::address_of(account);
130 assert! (exists<Profiles>(addr), EPROFILE_ALREADY_EXIST) ;

131 profiles = borrow_global_mut<Profiles>(addr);

aries/sources/reserve.move

382 public(friend) fun add_collateral<Coin®>(

383 lp_coin: Coin<LP<Coin®>>

KI¥d) acquires Reserves, ReserveCoinContainer {

385 reserve_type_info = type_info<Coin0>();
386 assert! (

387 reserve_details::allow_collateral(

388 &reserve_details(reserve_type_info)

389),
390
391

Remediation

To remediate this issue, error codes should be defined and used at relevant places for easier debugging.

© 2022 OtterSec LLC. All Rights Reserved. 14 /19

Aries Markets Audit 05 | General Findings

OS-ARS-SUG-04 | Fee Withdraw Function For Admin

Description

The fee for the protocol is collected and stored in ReserveCoinContainer. fee. This fee s collected
while converting liquidity provider tokens to underlying tokens and also while liquidating a profile. Either
the deployer (@aries) or the admin should be able to withdraw this fee into their account.

Another fee on accumulated borrower’s interest is stored in ReserveDetails.reserve_amount.
This fee is collected on the interest accrued on the borrowed shares. The admin should have the ability to
collect this fee amount to his account.

Remediation

A function should be implemented which can only be accessed by the admin to withdraw protocol and
accrued interest fees to the admin’s account.

© 2022 OtterSec LLC. All Rights Reserved. 15/19

06 ‘ Formal Verification

Here we present a discussion about the formal verification of smart contracts. We include example
specifications, recommendations, and general ideas to formalize critical invariants.

ID Description

OS-ARS-VER-00 Specify internal properties of ReserveConfigand InterestRateConfig.

OS-ARS-VER-01 Function invariant specifications.

© 2022 OtterSec LLC. All Rights Reserved. 16/19

Aries Markets Audit 06 | Formal Verification

OS-ARS-VER-00 | Data Invariant Specifications

1. The conditions asserted while creating a new reserve configuration can be easily enforced via data
invariant.

aries-config/sources/reserve_config.move

spec ReserveConfig {
invariant 0 <= loan_to_value && loan_to_value <= 100;
invariant 0 <= liquidation_bonus_bips && liquidation_bonus_bips
& <= 10000;
invariant 0 <= liquidation_threshold && liquidation_threshold <=
~ 100;
invariant 0 <= liquidation_fee_hundredth_bips &&
— Lliquidation_fee_hundredth_bips <= 100;
invariant 0 <= reserve_ratio && reserve_ratio <= 100;
invariant 0 <= borrow_fee_hundredth_bips &&
< borrow_fee_hundredth_bips <= 1000000;
invariant borrow_Tlimit <= deposit_Tlimit;

2. Similarly, for the interest rate configuration, the conditions can be enforced using invariants.

aries/sources/reward_container.move

spec InterestRateConfig {
invariant 0 <= optimal_utilization && optimal_utilization < 100;

invariant min_borrow_rate <= optimal_borrow_rate;
invariant optimal_borrow_rate <= max_borrow_rate;

© 2022 OtterSec LLC. All Rights Reserved. 17/19

Aries Markets Audit 06 | Formal Verification

OS-ARS-VER-01 | Miscellaneous Function Specifications

1. Explicate when key functions can abort. For example,

(a) Utility function for depositing coins should abort only if the receiver CoinStore is frozen
and function for burning coins should never abort.

aries/sources/utils.move

spec deposit_coin {
aborts_if global<coin::CoinStore<Coin®>>(
signer::address_of(recipient)
) .frozen;

spec burn_coin {
aborts_if false;

(b) Queries for checking the existence of a resource should never abort.

aries/sources/reward_container.move

spec exists_container {
aborts_if false;

2. Decimal module can be formally verified by writing specifications for the functions such as:

decimal/sources/decimal.move

P64 : = 0x10000000000000000;
spec add {
aborts_if a.val + b.val >= P64 * P64;
ensures result.val == a.val + b.val;

spec sub {
aborts_if b.val > a.val;
ensures result.val == a.val - b.val;

© 2022 OtterSec LLC. All Rights Reserved. 18/19

A ‘ Vulnerability Rating Scale

Werated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user funds with minimal preconditions
Examples:

+ Misconfigured authority or access control validation
« Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

+ Loss of funds requiring specific victim interactions
+ Exploitation involving high capital requirement with respect to payout

Vulnerabilities that could lead to denial of service scenarios or degraded usability.
Examples:

« Malicious input that causes computational limit exhaustion
+ Forced exceptions in normal user flow

Low Low probability vulnerabilities which could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants
+ Improved input validation

© 2022 OtterSec LLC. All Rights Reserved. 19/19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-ARS-ADV-00 [crit] [resolved] | Improper Oracle Calculations
	OS-ARS-ADV-01 [high] [resolved] | Improper Calculation in Liquidation
	OS-ARS-ADV-02 [med] [resolved] | DOS While Removing Shares From Reserve

	General Findings
	OS-ARS-SUG-00 | Enforcing Unlimited Deposit and Borrow Limits
	OS-ARS-SUG-01 | Validating Struct Fields Before Updation
	OS-ARS-SUG-02 | Improper Constraint on Optimal Utilization
	OS-ARS-SUG-03 | Usage of Proper Error Codes
	OS-ARS-SUG-04 | Fee Withdraw Function For Admin

	Formal Verification
	OS-ARS-VER-00 | Data Invariant Specifications
	OS-ARS-VER-01 | Miscellaneous Function Specifications

	Appendices
	Vulnerability Rating Scale

